Quadrature Rules for Fuzzy Integrals
Authors: not saved
Abstract:
This article doesn't have abstract
similar resources
Quadrature rules for singular integrals on unbounded intervals
The importance of singular and hypersingular integral transforms, coming from their many applications, justifies some interest in their numerical approximation. The literature about the numerical evaluation of such integrals on bounded intervals is wide and quite satisfactory; instead only few papers deal with the numerical evaluation of such integral transforms on half-infinite intervals or on...
full textGauss-Jacobi-type quadrature rules for fractional directional integrals
Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...
full textGauss Type Quadrature Rules for Cauchy Principal Value Integrals
Two quadrature rules for the approximate evaluation of Cauchy principal value integrals, with nodes at the zeros of appropriate orthogonal polynomials, are discussed. An expression for the truncation error, in terms of higher order derivatives, is given for each rule. In addition, two theorems, containing sufficient conditions for the convergence of the sequence of quadrature rules to the integ...
full textNumerical Quadrature Rules for Some Infinite Range Integrals
Recently the present author has given a new approach to numerical quadrature and derived new numerical quadrature formulas for finite range integrals with algebraic and/or logarithmic endpoint singularities. In the present work this approach is used to derive new numerical quadrature formulas for integrals of the form J"£" x"e~xf(x) dx and J"o° x"Ep(x)f(x) dx, where Ef(x) is the exponential int...
full texta cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولQuadrature Estimates for Multidimensional Integrals
We prove estimates for the error in the most straightforward discrete approximation to the integral of a compactly supported function of n variables. The methods use Fourier analysis and interpolation theory, and also make contact with classical lattice point estimates. We also prove error estimates for the approximation of the integral over an interval by the trapezoidal rule and the midpoint ...
full textMy Resources
Journal title
volume 8 issue 1
pages 0- 0
publication date 2011-10
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023